Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Journal of the Indian Chemical Society ; 100(3) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2257002

ABSTRACT

In this work, an analysis has been done to describe the molecular structure, spectroscopic, reduced density gradient, topological properties, atomic charges, Lipinski rule, Natural bond orbital analysis, docking and molecular dynamics simulation of the potent antiviral drug EIDD-2801 in the effective treatment against COVID-19. Intramolecular charge distribution is well understood by three schemes such as AIM, Mulliken and NBO analysis and non-covalent interactions have been understood through reduced density gradient. Topological properties, such as charge density and Laplacian of charge density along with the electron localization function, make it easy to obtain comprehensive information about bond strengths and critical points. The details obtained from the calculation of global reactivity descriptors and Lipinski rule are useful for understanding the nature of molecular reactivity and site selectivity. Electrostatic potentials help to identify potential electrophilic and nucleophilic sites for interaction between EIDD-2801 and target proteins. The molecular docking combined with molecular dynamic simulation studies enables us to get better picture about the ligand-protein interaction.Copyright © 2023 Indian Chemical Society

2.
J Biomol Struct Dyn ; 40(17): 7796-7814, 2022 10.
Article in English | MEDLINE | ID: covidwho-1147891

ABSTRACT

The novel coronavirus also referred to as SARS-CoV-2 causes COVID-19 and became global epidemic since its initial outbreak in Wuhan, China, in December 2019. Research efforts are still been endeavoured towards discovering/designing of potential drugs and vaccines against this virus. In the present studies, we have contributed to the development of a drug based on natural products to combat the newly emerged and life-threatening disease. The main protease (MPro) of SARS-CoV-2 is a homodimer and a key component involved in viral replication, and is considered as a prime target for anti-SARS-CoV-2 drug development. Literature survey revealed that the phytochemicals present in Strychnos nux-vomica possess several therapeutic activities. Initially, in the light of drug likeness laws, the ligand library of phytoconstituents was subjected to drug likeness analysis. The resulting compounds were taken to binding site-specific consensus-based molecular docking studies and the results were compared with the positive control drug, lopinavir, which is a main protease inhibitor. The top compounds were tested for ADME-Tox properties and antiviral activity. Further molecular dynamics simulations and MM-PBSA-based binding affinity estimation were carried out for top two lead compounds' complexes along with the apo form of main protease and positive control drug lopinavir complex, and the results were comparatively analysed. The results revealed that the two analogues of same scaffold, namely demethoxyguiaflavine and strychnoflavine, have potential against Mpro and can be validated through clinical studies.Communicated by Ramaswamy H. Sarma.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Strychnos nux-vomica , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Endopeptidases/metabolism , Humans , Ligands , Lopinavir , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL